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In the first part of this paper, we construct an asymptotic expansion for the 
maximal Lyapunov exponent, the exponential growth rate of solutions to a 
linear stochastic system, and the rotation numbers for a general four-dimen- 
sional dynamical system driven by a small-intensity real noise process. Stability 
boundaries are obtained provided the natural frequencies are noncommen- 
surable and the infinitesimal generator associated with the noise process has an 
isolated simple zero eigenvalue. This work is an extension of the work of Sri 
Namachchivaya and Van Roessel and is general in the sense that general 
stochastic perturbations of nonautonomous systems with two noncommen- 
surable natural frequencies are considered. 

KEY WORDS: Lyapunov exponents; rotation numbers; It6 equations; 
almost-sure asymptotic stability. 

1. INTRODUCTION 

One of the primary concerns in the analysis of dynamical  systems is the 
determinat ion of the stability of the steady-state solutions. This analysis 
becomes more difficult when these systems are excited by a stochastic 
process. The stability of a linear stochastic system can be defined in several 
ways. The weakest, or least conservative, definition is that of stability in 
distribution. A more conservative estimate of the stability boundary  is 
described by stability in probability. Thus, if a system is stable in proba- 
bility, it is also stable in distribution. The last two definitions of stability in 
the stochastic sense are stability in the rth mean and almost-sure stability, 
or stability with probabil i ty one. If a dynamical  system excited by noise is 
stable according to either of these definitions, it is stable in distr ibution and 
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in probability, as well. However, rth mean and almost-sure stability do not 
imply each other, i.e., a system can be almost surely stable while its second 
moments grow exponentially. Kozin and Sugimoto, tj~ with extensions by 
Arnold, t2~ established a characterization between moment stability and 
almost-sure stability for linear It6 stochastic differential equations when the 
process is ergodic on the entire surface of the n-sphere. It was shown that 
the region of sample stability is the limit of the region of rth moment 
stability for r approaching zero. 

Stability in the almost-sure sense is determined by the sign of the 
maximal Lyapunov exponent. It was shown by Arnold and Kliemann TM 

that, for a linear system with stochastic parametric excitation, the Lyapunov 
exponents are analogous to the real part of the eigenvalue. Thus, the 
maximal Lyapunov exponent yields the almost-sure asymptotic stability of 
the linear system. We can also define the stochastic analog of the imaginary 
part of the eigenvalue; the rotation number determines the asymptotic rate 
of rotation for the stochastically perturbed system. 

In the present analysis, we approximate the maximal Lyapunov expo- 
nent and rotation number for a general four-dimensional linear system 
excited by noise. For the case when the noise is white, Khas'minskii 18~ 
presented necessary and sufficient conditions under which the system is 
stable with probability one without explicit mention of the Lyapunov expo- 
nent. The studies by Kozin and Prodromou tg) and Mitchell and Kozin ( ~  
yielded results for second-order systems and a complete examination by 
Nishioka 1~2~ considered the effects of all possible singularities that may be 
present in a one-dimensional diffusion process. 

In the case of ergodic but nonwhite noise excitation, few results are 
available. The existing results are due to Arnold et aL (4) and Pardoux and 
Wihstutz. 1~4~ A survey paper of 1991 by Pinsky and Wihstutz 1~5~ sum- 
marizes the previous work on this topic. A more recent investigation was 
performed by Sri Namachchivaya cj6~ in which the almost-sure stability 
of dynamical systems under the combined influence of stochastic and 
harmonic excitation was examined. 

As in most of the studies involving multi-degree-of-freedom systems 
reported to date, the analytical results in ref. 16 were derived under the 
condition that only one mode is critical while the remaining modes are 
strongly stable. This, however, is not necessarily true in all physical 
systems. For this reason, it is imperative to determine the almost-sure 
asymptotic stability of multi-degree-of-freedom dynamical systems with 
more than one critical mode. The maximal Lyapunov exponent and rota- 
tion number for stochastically perturbed codimension-two bifurcations 
have been calculated via the method of averaging by Sri Namachchivaya 
and Talwar. ~7) In ref. 17, averaging was applied to obtain a set of 
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approximate It6 equations for amplitudes and phases. However in order to 
decouple the amplitude and phase equations completely, certain restrictive 
conditions on the manner in which the noise entered the equations were 
imposed. 

The focus of this work is to approximate the maximal Lyapunov 
exponent for a four-dimensional system with two critical modes perturbed 
by a small-intensity multiplicative real noise process. The approach adopted 
here is the perturbation method developed by Sri Namachchivaya and 
Van Roessel. t~8~ Using this approach, no restrictions on the structure of the 
stochastic terms in the equations of motion are necessary to decouple the 
amplitude and phase equations. Thus, the results presented here are for a 
general four-dimensional system parametrically perturbed by a real noise 
process. As in ref. 18, the frequencies are noncommensurable and the 
infinitesimal generator associated with the noise process is assumed to have 
an isolated simple zero eigenvalue. 

Section 2 describes the formulation of the mathematical problem. 
General results for the probability density for all possible singular cases are 
presented in Section 3 and the maximal Lyapunov exponent is evaluated in 
Section 4 and the rotation number for each case in Section 5. Section 6 
summarizes the contributions of this research. 

2. S T A T E M E N T  OF THE PROBLEM A N D  F O R M U L A T I O N  

Consider a linear stochastic system governed by the following equa- 
tions of motion: 

.~ ,=Ax-e f (~( t ) )  Bx, x ~ R  4 (1) 

Appropriate scaling of the matrix A yields 

A = A o --/32A 1 

where 

61 0 
- w j  0 0 and A l =  0 62 A~  0 0 0 2 

0 0 - ~ 2  0 0 0 62 

The matrix B is described by B =  [bij] and the quantities 61 and 62 are 
damping parameters. In this analysis, it is assumed that the frequencies 09~ 
and co 2 are noncommensurable. The term r is a small-intensity real noise 
process defined on a smooth connected one-dimensional Riemannian 

822175/3-4-12 
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manifold M (with or without boundary). The smooth function f :  M ~  R is 
assumed to have zero mean. 

Before proceeding, a brief description of some of the results of 
Oseledec's Multiplicative Ergodic Theorem, 1'3~ as related to four-dimen- 
sional systems, is necessary. Consider the linear stochastic system in Eq. (1) 
under the assumption that r is ergodic. According to the Muitiplicative 
Ergodic Theorem, the Lyapunov exponent of the solution of Eq. (1), 
x(t; Xo), for the initial condition Xo (Xo :/: 0) is 

2(x0) = lim -llog IIx(t; x0)ll (2)  
I ~  t 

where ).(Xo) takes on one of r fixed or nonrandom values 2 , <  ... < 2 ,  
Which ,1 i is realized depends on the initial condition Xo. The multiplicities of 
the Lyapunov exponents sum to the dimension of the system n (in this case, 
n = 4). Associated with each ).i there exists a random linear invariant sub- 
space E;, known as an Oseledec space, such that E~ 0)E2 ~) ... 0) Er = R", 
with 

1 
lim - log Hx(t; xo) l l  = ~.~ iff x(t; Xo) ~Ei 

The dimension of each Oseledec space E; is given by the multiplicity of the 
associated Lyapunov exponent ~.g. 

The effects of deterministic detuning and noise on the Lyapunov 
exponents of the system under consideration are depicted in Fig. I. In the 
absence of noise and detuning, all eigenvalues lie on the imaginary axis. 
The addition of negative detuning stabilizes the system. In this case, as 
shown, all Lyapunov exponents are negative. In the presence of both deter- 
ministic detuning and noise, generically one expects four distinct Lyapunov 
exponents. The maximum of these, 2t, determines the almost-sure stability 
of the stochastic system. 

qlZ 

[m 

O 

Re 
O 

[m 

Re 

Im 

Re 

Fig. 1. 

(a) (b) (c) 

Effect of detuning and noise on system stability. (a) Zero noise and detuning, 
(b) detuning only, (c) noise and detuning. 
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The stability of the system described by Eq. (1) was studied by Sri 
Namachchivaya and Talwar ItTI using the method of stochastic averaging to 
derive a set of approximate It6 equations for the amplitudes and phases. 
Using that method, it is necessary to impose certain restrictive conditions 
on the matrix B in order to decouple the amplitude and phase equations 
completely. Employing the notation 

Hi~ =b2i_l.2j-l-b2i,2j_ I and J~ =b2i.~il-b2i_|,2j_ 1 

these restrictions are given as 

- -  + - -  + 4 -  - -  Hl2J21 + = 0 and - H ~ J ~  = 0 (3) H2jJl2 H21JJ2 

and either 

H u = H;-2 = 0  or J~  = J ~ = 0  (4) 

Examples of systems in which these conditions are satisfied include the 
double oscillator described by Ariaratnam and Xie ~ and problems with a 
symmetric B matrix. These conditions are also satisfied by the system con- 
sidered by Sri Namachchivaya and Van Roessel. ~8~ In the present analysis, 
no restrictions on the structure of the B matrix are required to decouple the 
amplitude and phase equations. Thus, the results obtained here are for the 
most general case of Eq. (1). The analysis presented in this paper is based 
heavily on the work completed by Sri Namachchivaya and Van RoesseU ~8~ 

Let G denote the infinitesimal generator of r i.e., 

1 0 2 

and, as in ref. 18, assume that G has an isolated simple zero eigenvalue. 
This implies that u = const is the only solution of Gu = 0. Consequently, the 
adjoint operator G* must also have an isolated simple zero eigenvalue. The 
results obtained from this analysis are applicable when the manifold M is 
of arbitrary dimension. For the case in which M is one-dimensional, the 
normalized invariant measure v(r satisfying the Fokker-Planck equa- 
tion G*v(r 0 can be written in terms of scale measure and speed density 
a s  

v(~) = m(~)[c, s(~) + c2] 

where 

S(~)= s(q)d~, m(~) = [a2(~) s(~)] -~ 

s (~)=exp  { - j  f* 2/~(q) d ~  q ;  "~ 
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The constants  cl and c2 are determined using boundary  and normali ty 
conditions, respectively. 

By the usual t ransformation,  i.e., 

X 2 i -  I = ri COS •i, X2i = F i sin ~i, Pi = ln(r i )  

we obtain ampli tude and phase equations of the form 

~i = a2[fii(~b)] + e[pi(e (''-p~), r  f(~(t)) (5) 

~i = [-O)i + 82~i(1~)] ..1_ 8 [ h i ( e l l h -  p)), ~)3  f ( ~ ( t ) )  (6)  

In this form, the ampli tude and phase equations are coupled by the 
presence of terms of the form e ("i-~ for iCj. Since e (p/-~ is always 
positive, we can introduce a one-to-one mappings  e ("i- p ' ) = t a n  0, 
0 ~ [0, rt/2]. Thus, applying the t ransformations 

x I = e "  cos r cos 0, x 2 =  - e  ~ sin r cos 0 

x 3 = e p cos ~b 2 sin 0, x4 = -e: sin ~b 2 sin 0 

to the original system yields the following set of equations for the 
ampli tude p, phase variables (~b I, ~b2, 0), and noise process 3: 

ti = ef(~) ql(~bl, r 0) + ~2q,(0) (7) 

~, = o~, + e f ( ~ )  h,(r  ~b2, 0) + e2h,(r i, ~b2, 0) (8) 

0 = ef(~) q2(r ~b2, 0) + 8202(0) (9) 

d~ = ~(~) dt + ,r(~) o dW,  (10) 

where the expressions for q~, ~ ,  and h~ (i = l, 2) are given explicitly in the 
appendix. Given the structure of the A 1 matrix it can be shown that h~= 0 
for i = l  2. 

The processes (~bl, ~b2, 0, 3) are independent of the ampli tude p and 
form a diffusive Markov  process with associated generator  

where, in general, 

L ~ = L  ~ + e L  ~ +~2L2 

2 
L ~  ~. o ~ - - + G ( { )  

L'=f(~)Iq2 f---~+ ~ hio-~i ] 
i= l  

= q20-Oq- i= I 
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For this particular A~ matrix, L 2= q2 0/(~0. We also define the function 
Q~(~b~, ~b2, 0, ~) such that 

Q, = QO + eQl + e2QZ 

In the present analysis, we can write Q' in terms of f(~), ql, and ~ as 
follows: 

Q~(~b., ~b2, 0, r = ef(~) qt(~b,, ~b2, 0) + ~2ql(0 ) 

Then, according to Oseledec's Multiplicative Ergodic Theorem, c~3~ assum- 
ing the operator U" to be ergodic, the maximal Lyapunov exponent is given 
by 

2~= <Q~' P~'> =~o ~M 

where p~ is the unique ergodic invariant measure associated with the 
generator L ~, i.e., p~" solves the Fokker-Planck equation given by 

L ~ ' p ~ = O  

provided L" is hypoelliptic. 
We construct a formal expansion of the invariant measure, i.e., 

p~= pO+~,pl + . . .  +eNpN + . . .  

Substituting this expansion and the expansion for L ' into the Fokker- 
Planck equation yields the following sequence of Poisson equations to be 
solved for pO, p., p_,,...: 

LO'pO=0 

L ~  I = - - L  l*p ~ (11) 

LO'p 2 = _ L  l ' p  I _ L 2"pO 

This yields the following expression for the maximal Lyapunov exponent: 

i f =  <OO, pO> +e[<Q' ,  pO> + {QO, p ,>]  

+eZ[<Q,- ,  pO> + <Ql, p.> + <QO, p2>] + ... 

A proof that this expansion is, in fact, asymptotic begins with the construc- 



532 Doyle and Sri Namachchivaya 

tion of the adjoint problem U F ' : =  Q~ with F ~ = F ~  . . .  + e N F  N as 
in ref. 4. In this expression, F ~ F ~ ..... F N are such that 

(L~ + e I + e2L2)(F~ + eF 1 + . . .  + eNF N) 

= Q ~ ' - ( q ~  + . . .  +eNq N) 

+ e N + t { L I F  N+ L2F N- 1} +eN+2{L2F N} 

The functions qO, ql ..... qN are independent of 0, ~bl, and ~b 2 and satisfy the 
equations 

L O F o = QO _ qO 

LOF I = Ql _ ql _LIFo .  

LOF 2 = Q 2 _ q : _ L I F  I _ L 2 F  o 

LOF N= _ q N _  L I F  N- I _ L2F N- 2 

Next we define the truncated density ~ = p ~  . . . + e N p  N and 
assume v(~) is the marginal  of both p~ and /~ on M. Employing Eqs. (11), 
the error  introduced by truncating 2 ~ at an arbi trary order N>~ 0 is given 
by 

( a ~ , f ) - ( Q ~ , p ~ )  

= _ e N + I [ < L I F N + L , F N - 1 ,  p,:_p~> + ( L l * p U + L 2 * p U - l ,  F~.> 

_ (QI, p,V)_ (QZ, p N - l ) ]  

_eN+ Z[ (L2FN ' f . _  f t . )  + (LZ*pN, V ~) _ (QZ, p N )  ] 

Suppose that the functions pO, pl,..., pN and F ~ F 1 ..... F N are such that 
all inner products  above are well defined. Since p~" is unknown,  we can 
assume that pO, pt,..., pN are constructed such that 

sup I L I F N + L 2 F U - I I < ~ K ~ < o o  and sup IL2FNI<.K2<oo 

Applying the above estimate, it is clear that  the expansion for a fixed N/> 0 
is a valid asymptot ic  expansion. 

Since Q ~  the expression for the maximal  Lyapunov  exponent  
reduces to 

)." = e<Q' ,  pO> + eZ[<Q2, pO> + <Q,,  p,  >] + . . .  
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where pO and pl satisfy the Poisson equations above with the periodic 
boundary conditions 

pO(r r 0, ~) = pO(r + 2rt, r 0, ~) = pO(r r + 2n, 0, r 

P'(r r 0, ~ )=  p1(r + 2~, r 0, ~ )=  P'(r r + 2rt, 0, ~) 

Solving the O(1) Poisson equation with appropriate boundary conditions 
and considering the noncommensurability condition on the natural fre- 
quencies yields 

v(~) F(O) 
pO(r O ) -  4------5--- - 

where v(~) is the invariant measure satisfying G ' v = 0 .  Note that for 
arbitrary F(O), the inner product <Q~, pO> = 0  due to the periodic bound- 
ary conditions on r and Oz and the zero mean assumption on f(r The 
maximal Lyapunov exponent, up to O(e2), reduces to 

2~=e2[<Q2, pO> + <Q,, p ,> ]  (12) 

and ker(L ~ is one-dimensional by the assumption on the generator G. 
Thus, the solution for pl exists and is unique. 

The solvability condition of Eq. (13) reduces to 

where 

fo "j' ,~(o) c(o) dO = o 

The O(e) Poisson equation and its adjoint are 

L~176 I = - L l ' p  ~ and L~ = 0 

and the associated solvability condition is 

<Ll"p ~ u> = 0  Vueker(L ~ (13) 

Due to the assumption on G and the boundary conditions on r and r we 
have 

ker(L ~ = { C(0): C is an arbitrary function of 0 } 
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which must hold for arbitrary C(O), This implies 

_~(0)=0 

This condition is automatically satisfied due to the periodicity of ~b~ and ~b2. 
Thus, we are not able to determine F(O) using the O(e) solvability condi- 
tion. We can, however, find an expression for p~ in terms of F(O). To do 
so, rewrite the O(e) Poisson equation as 

where 

R(~,,~,O) 

( L #),,, G*-ogi = 
i ~ l  

f(~)v(~) 
4~ 2 R ( r 1 6 2  (14) 

1 ( j ~ _ j ~ )  (cg_so)F+_~S2o 
2 

[ ( ' )  -- 1+-~C2o F+~S2o (J~c2c,,+H+s2o,) 

[ ( ' )  ' 0q -- l--~c z~ F--~s20 (J2zczc,2+H~s,_r 

'[ +-~ (2CoSo+to)F+so O (J~C--J~C+ + H ~ S - - H ~ S  +) 

+_~[(2Coso+ll ~ ) F _ c 2 o ~ ( J ~ C _  J ~ C + _ , ~ S _ _ , ~ S +  ) 

In the above expression, we have used c~. I = cos(. ), s c. ~ = sin(- ), tl. I = tan(.  ), 
and C -+ = cos(wl + o92), S • = sin(o91 + 092). 

Introduce an auxiliary time t such that Eq. (14) becomes 

(O_~_ G* + o9i ~ O-~) ~p, f(~)v(~)R(fb~,ck2,0)4rt2 (15) 
i = 1  

The density p~ is the stationary solution of Eq. (15) and solves Eq. (14), 
i.e., 

p'(~b,, ~b 2, 0, ~ )=  iim [p~(~b~, ~b_,, 0, 3, t )]  

Employing the transformation 

o92/3 2 \ og l ~ 2 ,1_] 
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and ) "=( .O1~2-- (D2~ I in Eq. (15) yields 

(8~rr -- G*) p,l= H(~)4~z_ R(~b,(T, s, Y), ~b2(z, s, Y),0) (16) 

where H(r162162 Equation (16) is an inhomogeneous boundary 
value problem. We can transform this into a homogeneous initial value 
problem using Duhamel's principle with zero initial conditions (see, for 
example, ref. 19). The solution to Eq. (16) can then be written as 

p~(r,s, ]", r  2 R((~j(z-T,s,  Y),(~2(r-T,s, Y), 0)K(~, T) dT 

where g(~, T; r/, 0) is the transient density which solves 

Og 
O----i=G*g, g(~,O;q,O)=b(~-q) 

and 

K(~, T) = fM H(q) g(~, T; q, O) dr/ 

The final form of p~(~bl, ~b2, 0, ~) is found by taking the limit as r ~ or: 

1i-- pt(~,,~b2,0,r R(~,T-q~, ,m2T-q~2,0,  T) K(r T) dr  (17) 
47F 0 

In Eq. (17), R(w1T-fb 1, ~2T-~2 ,  O, T) contains F(O) and its 
derivatives which have yet to be determined. This can be accomplished 
with the aid of the O(e z) solvability condition. Recall the O(e 2) Poisson 
equation 

where 

0 
Zo = ~ (02 pO) 

Then we have 

-~o,  = Zo(~,, ~,_, 0, ~ )+  z , (~, ,  ~_,, 0, r 
i = l  

(18) 

and Zl- - f (~ )  (q2pl) + ~ -~g(hip 1) 
i = l  

L~ 2 = Xo + Zz 
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and the corresponding solvability condition 

( Z O - { -  ~ l ,  C(O) ) = 0  VC(O)~ ker(L ~ 

Evaluating the solvability condition for arbitrary C(O) yields the following 
ordinary differential equaiton for F(0): 

d 1 d 2 
dO [-q~(0) F(0)] + } ~ - ~  [ ~ 2 ( 0 ) r ( 0 ) ]  = 0  (19) 

where 

~2(0) = A cos'- 20 + B cos 20 + C 

r  = '_ - - _ -~(21 2~) sin 20 + ~2(0) cot 20 

This is indeed the diffusion equation in 0. This describes the stochastic 
coupling between Pl and P2 in Eq. (5). 

Throughout the remainder of this paper, the following notation will be 
used: 

%.=~{[-(H;)2+(J+) 2] S(O-)+ [-(H~)2+(J;) ;-] S(Ea+)} 
/L = ~ [ ( H ;  )" + (J ; )~ ]  S(20,,t 

~-~- ~ [ ( H ~ H g  + J ~ J ~ )  . . . .  S(E~ + ) -  (H,2H2~ -Jl%J2+~) S(~ )] 
Y, = �88 JR + H?2 J+ ) F((2- ) 

1 + = HI2J2t ) ) 72 "~(H21J~- + - 1-'( Q+ 
1 + 7 = ~(J , , -J~)2S(O)+�88188 -'~.u 

The sine and cosine spectrums are defined, respectively, as 

;o fo F(~) = 2 R(T) sin o~TdT, S(o~) = 2 R(T) cos ogTdT 

where R(T) is the autocorrelation of f(~) ,  i.e., 

R (T)=  I f ( ~ ) K ( ~ , T ) d ~  
M 

and 12 • = ~ol + w2. Employing this notation, we can write 

A = - ?  

B =  - -  ~(0~12 - -  0(21 ) = _  - -~o( l  - 

c = ~ +  �89189 + 

•i = --(~i~i-fii  a n d  ~ i = 2 i - ~ - ? i  
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where 2, and 2, are the Lyapunov exponents for the case when the modes 
in Eq. (1) are decoupled. 

Equation (19) can be rewritten as 

-~ - ~(0) F(O) + ~ ~-~ [ 7'2(0) F(0)] = 0 (20) 

Let A,,(O) be the term in the brackets. Then, As,(O) must be constant with 
respect to 0, i.e., A,,(O) = A,,. By examining Eq. (20), we can see that there 
may be singularities in the open interval (0, n/2). All possible singular cases 
must be considered when attempting to solve this expression for F(O). The 
location of the singular points and the behavior of the diffusion process in 
the presence of these singularities will be examined in the next section. 

. E V A L U A T I O N  OF S O L U T I O N S  

The solution to the Fokker-Planck equation can be written as 

F(O) = rn(O)[2A,, S(O) + c] (21) 

where the scale and speed measures are defined in terms of r and 7" as 

r e ( O )  = [ 7 " - ' ( 0 )  s ( 0 ) ]  - ' 

s(0)=exp { -  fo 2q~(t/) ~o j 7"z(q) dq}, S(O) = sO1) dtl 

and F(O) satisfies boundary and normality conditions. The boundary 
conditions for F(O), as well as the evolution of the process when 
singularities exist, will be discussed in this section. We can rewrite s(O) as 

s( O ) = e b~~ 

where 

_ ;o 2q~(q) d 
b(0)= ~ q=lnls inZOl+(~2-~. t ) f l (O) 

In terms of the parameters A, B, and C, 

1 fcos 2o dt 
f l ( 0 ) = - ~ j  At2 + Bt + C 
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The last integral can be broken down into the following six cases: 

l. A, B, C r  

2. B = 0  and (i) A, C r  (ii) A =0 ,  C~a0, (iii) A 4:0, C- -0 .  

3. C = 0  and A, B r  

4. A = 0  and B, C~-0. 

5. A = C = 0  and Be-0. 

6. A=B=C=O. 

Singularities in the F(O) process are 0 values satisfying either 

7t2(0) -- 0 or ~ (0 ) - -  oo 

These singularities can be classified according to Feller's scheme as 
entrance, exit, natural, or regular boundaries of a region of state space. ~6~ 
The following definitions, summarized by Karlin and Taylor, ~7~ are needed 
in order to classify the behavior of a stochastic process at a singular point 
Os and to determine the type of boundary present: 

SOs, O] = ~o 
O~ 

N(O,)= f ~ 
Os 

0 

s(q) dq, M(O,, O] = f m(tl) dq 
Os 

} S(O,,~]dM(~)=f m(y)dy s(q)dq 
O~ I 

} M(O,, ~] dS(~) = fl s(y) dy mlq) dq 

In the above definitions, S(Os, 0] and M(O s, 0] are the scale and speed 
measures, respectively. We will also use the notation S(O) and M(O) in 
which the explicit dependence on 0s is dropped. The last two quantities 
measure the time it takes to reach the boundary of the state space starting 
from the interior, Z'(0s), and the time required to reach the interior 
beginning at the boundary, N(Os). In the above definitions, 0s is a left 
boundary. Analogous definitions are employed when 0s is a right boundary. 

An entrance boundary cannot be reached from the interior of the state 
space but it is possible for the process to begin at such a point. The 
singular point is an entrance boundary if and only if 

S(O~, 0] = oo and N(Os) < oo 

Once the process reaches an exit boundary, it is impossible to reenter the 
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interior. The necessary and sufficient conditions for a singular point to be 
an exit are 

M(O,, 0] < m and Z(O,.) < 

An exit boundary  within the state space implies that  the process eventually 
exits a port ion of the space and enters another  region. The direction in 
which this boundary  is traversed depends upon the sign of the drift term 
~(0~) as follows: 

left (backward)  shunt 

right (forward) shunt 

t rap 

A diffusion process can neither reach in finite mean time nor be started 
from a natural (Feller) boundary. A singular point is a natural  boundary  if 
and only if 

N ( 0 , ) = ~  and Z ( 0 s ) = ~  

Finally, a regular boundary allows the diffusion process to both enter and 
leave. The criteria for a regular boundary  are 

S(O~, 0] < ~ and M(Os, O] < 

In this investigation, we will examine all possible singular cases. We can 
compute  the function F(O) and determine the behavior  of the process at the 
singular points. 

Employing the above criteria, it can be shown that for all six cases, 
the boundary  points 0 = (0, n/2) are entrance boundaries.  Since S ( 0 ) =  - 
and S(rt/2)= ~ ,  in order for F(O) to remain positive throughout  the inter- 
val, it must be that A , = 0  in Eq. (21), i.e., the zero-flux property. This 
leaves 

F(O) = cm(O) (22) 

where e is the normalizing parameter .  The expressions for re(O) and the 
normalizing constant  c for each case are given below. 

Case 1.A, B, C=/=O: 

~2(0)  = - ) ,  cos 2 20 - �89 (ct,2 - ~t2, ) cos 20 + 1' + �89 + ct2,) 

The only singularities for this case are the entrance boundaries 0 = 0 and 
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0 =  x/2 as shown in Fig. 2. We define the discriminant A = 4 A C - B  2 and 
consider the case A > 0, A = 0, and A < 0. 

For  A > 0 

sin 20 tan 

and 

1 exp - ~ -  tan - i 
M ( 0 ) = 2 2 - - ~  , _ _  x//-A 

For  A = 0 

sin 20 
re (O)  = ~ exp (2A ~.2 - 2L ' os + B) 

and 

1 ex ( ) 
M(0) = ~2 - ~, 2A cos 20 + B 

For  A < 0 

sin 20 ['~., - 7,, (2  A cos 20 + 

and 

1 
M ( O )  = _ ~ 

2 2 - 2 1  

~]2 - ~-, (2A cos 20 + B'~'( 
exp ( x / -  A tanh--1 ~ ] J 

Fig. 2. 

Entrance 

Entrance 

Boundary behavior for singular Cases 1, 2i (AC  > 0), 2ii, and 4. 
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In all of the above cases for A, the normalizing constant c is 

c = [M(rr/2) -- M(0) ]  - '  

where the appropriate M(O) must be used. 

Case 2i. B = 0 and A, C :/: 0: 

~u2(0) = -7 cos2 20 + 7 + ct 

B = 0  implies ~ ,2=~2,  = r  As in Case 1, the singularities at 0 =  (0, rr/2) are 
entrance boundaries. There is, however, an additional singularity in this 
case at 

0 = 0 , = ~ c o s - '  

which is valid only when AC<O. The function re(O) is given by 

(sin 20 f - ( ) . 2 - 7 ~ , ) ( ~  ) }  
| ~_--~-~ exp j - - ~ C - ~ , ~ -  tan - ' cos20  , AC>O 

m(O)=lsin20~l ~f 7.2-72, -, f ( - A C )  'n- ~'~) 
~ ~-~-~  exp ~ 2( _ AC)I/_, tanh ~ ~ cos z t l )~ ,  AC<O 

In order to determine the normalizing constant c, we must consider 
the two cases AC>O and AC<O separately. For  AC>O, since no 
singularity exists in the open interval (0, rt/2), c is simply 

c =  ~ ( ~ 2 -  ~,) csch [~ -~  ~-~ ~ t a n - '  

When A C < O, it can be shown that the point 0 = O, is a left or right shunt, 
depending on the sign of ~(0,) ,  where 

�9 (0,)=5 (~2- ~,) + 

For ~, > ~, 

~cm(O), 0 e (0, 0,) 
F(O) = (0, 0 e (0,, ~/2) 

In this case, the point 0 = 0, is a left shunt. A process starting from a point 
in the region 0~ (0s, n/2) will eventually leave this region and the shunted 
over to the port ion of state space bounded by 0 e  (0, 0.,.). This leads to a 
buildup of probability in the region 0 ~ (0, 0,). 
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For ~, < 2 2 

0, 0 e (0, 0.3 
F (0 )=  cm(O), 0 e  (0,, rt/2) 

Here, 0 = 0, is a right shunt. A process starting from a point in the region 
0 e ( 0 , 0 , )  will eventually be shunted over to the region bounded by 
0e  (0,, n/2) and the probability accumulates in this region. In both cases, 

The singular behavior for this case is summarized in Fig. 3. 

Case2ii. B = 0 a n d  A = 0 ,  C # 0 :  

~-'(0) = c~ 

As in Case 1, the only singularities are at 0 = (0, n/2) (see Fig. 2) and re(O) 
and c are given by 

re(O) sin2Oexp{ . - ( ~ 2 - ~ 1 ) =  e ~ cos 20} 

and 

~2- ~, csch (~2- ~," ~ 
c =  2 \ 2c~ J 

Fig. 3. 

Entrance 

( / x /  

Entrance 
(a) 

Boundary behavior for singular Case2i 
(b) i, < 22' 

Entrance 

d / Z /  
Entrance 

(b) 

(AC<0) and Case2iii (a) ~.l>~.z, 
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Case 2iii. B = 0 and A 4= 0, C = 0: 

~2(0) = ct cos: 20 

In addition to the singularities at the boundaries 0 = (0, rt/2), there is also 
a singular point at 0 -- rt/4. As in Case 2i, the sign of ~(0s) determines the 
behavior of the process at this point. In this case 

�9 ( 0 s ) =  L - ~ ( : . :  - 7~, ) 

For  ~1 > ~2 

~cm(O), 0 6 (0, r~/4) 
F(O) = (0,  0 e (~/4, 7t/2) 

Thus, the point 0 = M4 is a left shunt. This leads to a buildup of probability 
in the region 0 e (0, M4). 

For  ~1 < ~2 

0, 0 ~ (0, n/4) 
F(O) = cm(O), 0 6 (n/4, re/2) 

Here, 0 = n/4 is a right shunt and the probability accumulates in the region 
Oe (n/4, n/2). In both of the above cases, 

sin 20 [~: - ~J sec 20)  m(0) = - - ~ - ~  exp ~--- - - -~ 

and 

c= 17.:-7~11 exp 2ct 

Figure 3 summarizes the behavior of the diffusion process for this case. 

Case 3. C = 0 a n d A ,  B r  

~ : ( 0 )  = A cos 2 20 + B cos 20 

In this case, we have singular points at 

7Z 
0 = ~ and 

1 ( - - ~ - )  I C t -  ) 
0 = 0 , = ~ c o s - '  =~cos ' 

as well as at the boundaries 0 = (0, n/2). 

822/75/34-13 
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For  ~l > 22 and B < 0  

~m(O), 
F(O) = c, ( 6 ( 0  - rt/4), 

0z(o,  0s) 
0 ~ (0s, re/2) 

By Feller 's scheme, the point  0 = 0, is an ent rance  and  0 = n/4 is an exit 
boundary .  

For  ~ l > ~ 2 a n d  B > 0  

fm(O) ,  0 ~ (0, rt/4) 
F(O) = ct ( 6 ( 0  - 0~), 0 ~ (rt/4, re/2) 

The singulari ty at 0 = 0s is an exit and  0 = 7t/4 is an entrance boundary .  
For  )- l < )-2 and  B < 0 

,fa(0-o,), 
F(O) = c2 On(O), 

0 ~ (0, n/4)  

0 ~ (n/4, re~2 ) 

The point  0 = 0.,. is an exit and 0 = n/4 is an entrance.  
For  ~1 <~,2 and  B > 0  

~6(0 - n/4), 
F(O) = c2 (re(O), 

0s(0 ,  G) 
0 ~ (0,., ~/2) 

The singular point  0 = 0s is an ent rance  b o u n d a r y  and  0 = n/4 is an  exit. 
The b o u n d a r y  behavior  for this case is depicted in Fig. 4. In all cases, 

sin 20 201 ~'' ~..,I/=- m(O) = ~--~-~--~ I - ~  + + ~ -  sec 

and  

C l - -  _ C 2 - -  _ 

)-2 - ~l - (2ct2t)G - ~2v~- ' )-2 - 2. + (2ct 12) ~ '  - ~21/~- 

Case  4. A = 0 and B, C :/: 0: 

~2 (0  ) =  i + l 5c~ - ~  cos 20 

The only singular points  for this case are at the boundar ies  0 = (0, n/2)  
(see Fig. 2) since the singular point  defined by 

1 1 0 -_ cos 
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Entrance 

Jt 
(a)" Entrance 

E . ~ a . ~ e  o. =l co~-lh/'~-I 

/I / / 

(b) Entrance 

Fig. 4. 

Enl rance rance 

n 14 

o. =i  0o~-I h/-~-I 
2 ~V A/ 

Entrance 
(e) 

1/ / / ~  x/4 

I I ,I / / " 

Entrance 
(d) 

Boundary behavior for singular Case3. (a) ~.)>~.,, B<O, (b) 2~>;.2, B>O, 

(c) 21 <22,  B < 0 ,  (d) 2j <22,  B > 0 .  

can be s h o w n  to co inc ide  wi th  either 0 = 0 or 0 = n/2  due  to the c o n d i t i o n  

0~< ~--~-+_ ~<I 

In this case,  

sin 20 
m(O)- ~2(0 ) = - - [ - c ~  + +c~- cos 201 (~''--~'')/=- 

and 

s  '~'2 --  ~I 

(2~)2)(~:- ~,)/=- _ (2~x21)(x2- ~,)/=- 

C a s e  5.  A = C = 0  and B : # 0 .  Sat is fy ing A = C = 0  requires the 
f o l l o w i n g  condi t ions :  

), = 0 and et + = 0 

Since c~+ = 0~2 + a2~, where  a~2 and ~2~ are nonnegat ive  quanti t ies ,  the 
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second requirement implies 0~12=~21 =0. For B:/:O, the following condi- 
tion must hold: 

~ -  =%=0 

These cannot be satisfied simultaneously. Thus, the Case 5 singularity is 
not possible. 

Case 6. A = B = C = O :  

~2(0) = 0 V0e (0, rt/2) 

This corresponds to the case of two uncoupled oscillators. In this case, 
the diffusion process is singular for all values of 0 and a function F(O) satis- 
fying the normality condition over the interval (0, n/2) cannot be found. 
However, as stated previously, the Lyapunov exponents for this situation 
are 2~ and 22. The maximal Lyapunov exponent is simply the greater of 
the two. 

4. M A X I M A L  L Y A P U N O V  E X P O N E N T S  

The maximal Lyapunov exponent given by Eq.(12) can now be 
calculated. Letting 

J ( O )  = ~ r ' / 2 ( 0 ) +  1 - __ 2(~'1 ~'2) COS 2 0  

and 

and considering terms up to O(e 2) only yields the following for the expan- 
sion in 2~: 

{f~/2 .r,/2 } ,~,=~2 J(O)F(O)dO+Cjo F(O)dO (23) 

Integration by parts and substitution of the appropriate F(O) yields the 
maximal Lyapunov exponent for each of the singular cases. 

Case 7. A, B, Cv~O. For all cases (•>0, , J=0 ,  ,d<0),  using the 
appropriate M(0), 

{~ [M(n/2)+M(O)]} 
':ff = e2 (2z-~ti) [M(rt/2)-M(O)] + ?  
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Case 2i. B=0  and A, C#0.  For AC>0: 

I -(i~-~') +~} 2~ = e2 {~ (22 -- 2, ' coth L (---~,-iTT tan- '  ( ~ ) ]  

For AC < 0, recall we have the additional singularity at 0 = 0s. The maximal 
Lyapunov exponent is given by 

2~ = e2 (12 , -  2|1 exp {1~.2- ~|1 [ 1 ( ~ ) m ) ] }  
2 1 (_AC)I/. ,tanh -I ( -  

I~z- 2,l (~, - 22) (-AC)'/2 exp (l'2z-'2 ")  + ?) 
4 ~ A 2A 

Case 2#. B = 0 and A = O, C # O: 

2' = e2 {~ (22- ~-,) coth ( ~ )  + ?} 

Case2iii. B = 0 a n d A # 0 ,  C=0:  

Case3. C=OandA, Br For2~>'22andB<O 

For ~-1 > ~2 and B > 0 

L 22-2 ,  - (2~2,) ~;'' - x21/'- ! ] +  

For ~ l<~2and B < 0  

I - (2~12)~; '  - ;'~l/:- - ( ~ - / ~  + ) ( i 2  - ~'' ?} 

For ~-1 <2~_ and B > 0  

- ~ + (2~2)  ~' - ~.~1/~-_1 
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Case 4. A = 0 a n d B ,  C # 0 :  

Case 6. A = B = C = 0 :  

),  = e2 max(2~, ),2) 

It is important to note that when the conditions of Eq. (3) are imposed, 
7t =72 =0, the maximal Lyapunov exponent given by Eq. (23) is identical 
to that obtained via the method of averaging. ~'7~ 

5. R O T A T I O N  N U M B E R S  

The Multiplicative Ergodic Theorem for rotation numbers is given in 
a recent paper by Arnold and San Martin 15~ in which a general method is 
given for calculating the rotation numbers pa of the canonical planes 
p~j=span(Ei, Ej), where Ei and Ej are the Oseledec spaces described 
earlier. The rotation number of any other plane will pick the value Pu 
whenever this plane has pa as the strongest component. In the current 
calculations, three angles have been introduced. Thus, by definition, there 
would be a rotation number associated with each angle giving the exponen- 
tial rotation rate. Since these angles are not defined with respect to canoni- 
cal bases, the rotation numbers cannot be readily related to those given in 
ref. 5. However, it is clear that if the plane of x~-x2 corresponds to any of 
the p~, then one can relate ~1 to Pu. A similar relation exists for ~2. The 
relationship between the results of Arnold and San Martin and those 
presented here must be further investigated. 

The rotation number, the stochastic analog of the imaginary part of 
the eigenvalue for the linear system, is calculated in this section. In terms 
of the invariant measure p~, the rotation numbers are given as 

where 

~ = <H~, p':> (24) 

H~(~b,, d2, 0, r = o2,+ ef(~) hi(~,, ~b2, 0) + ~-'h,(~b,, ~b,_, 0) 

Again, for A~ as given, h~= 0. 
The rotation number given by Eq. (24) can be rewritten as 

~7= (o9,, pO> +el(co, ,  p '>  + ( f (~ )  h,, pO>] 

+~2[(~o,, p2> + ( f (~ )h , ,  p '> + <h,, pO>] (25) 
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where co i is a constant and p~ is scaled such that p~ and p2 have mean zero. 
The last term is zero due to the structure of the A~ matrix. Due to the 
periodic boundary conditions on ~, and ~2, as well as the zero mean 
assumption on f ( r  we have 

<f( r  h,, pO> = 0 

Hence, Eq. (25) reduces to 

ct~ = 09 i + 83<f(r hi, pl > (26) 

Making use of the definitions 

a,2 = ~{[(H~)2+(J~2)2)]F(I2-)+[(H~) 2 + (J,2)- 23 r(f2 +)} 
a2, = ~ { [ (Hfi  )2 + ( j~ )2 ]  F(E2- ) - [ ( H ~  )2 + ( j~ )2 ]  F(E~ + )} 

~ i  - -  1 + 2 - ~ [ ( H .  ) + (J~7)2] F(2o~) 

i~ 1 = I [ (  - -  H~ H~ + J l +  J2+l ) F(~'-2 - ) ]  

IJ2 = ~[(H~H~ + J ~ J ~ )  F(Q +) 

~, = �88 J~ + Ht-2J2+~) S ( ~ -  ) 

i2 1 + ) S(~2 + ) = ~(H2t J~ - H,+2J2] 

we can write the rotation numbers as 

1 ~ A 1 ~ ~, = c0~-82{fi~ + _ v ( ? 2 - ? l ) +  (/Jr +/J2) + ~ctl2 lim [sec(O)F(O)]} (27) 
O ~ n/2 

8 2 ~ l = ~ , -  {fi2 l ( L + + ~ , ) - ( ~ , - & ) + '  " _ - ~21 lim[csc(O) F(O)]} (28) 
0 - - 0  

By substituting the appropriate F(O) into the above expressions, we can 
find the rotation numbers explicitly for each of the possible singular cases. 

6. CONCLUSIONS 

In this paper, an asymptotic expansion for the maximal Lyapunov 
exponent, the exponential growth rate of solutions to a linear stochastic 
system, and the rotation numbers for a general four-dimensional dynamical 
system driven by a small-intensity real noise process were constructed. 
Stability boundaries, defined as the points at which the maximal Lyapunov 
exponent becomes zero, can then be obtained provided the natural frequen- 
cies are noncommensurable and the infinitesimal generator associated with 
the noise process has an isolated simple zero eigenvalue. This last assump- 
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tion was made to make the solution tractable. The advantage of this 
method over the method of stochastic averaging is the applicability of the 
perturbation approach to problems in the form of Eq. ( 1 ) without imposing 
any conditions on the form of the B matrix. For systems in which these 
conditions hold, the expressions for the maximal Lyapunov exponent and 
the rotation numbers calculated here reduce to those presented by Sri 
Namachchivaya and Talwar.Ct7 

It is worth pointing out that there are some other quantities that may 
be obtained asymptotically employing the current technique. On can use 
Liouville's theorem to calculate the sum of the Lyapunov exponents as the 
expected value of the trace of the complete linear coefficient matrix, i.e., 
E(Trace[Ao - e2Al + eBf(~)] ) = Z4= ~ 2i. Considering the definition of the 
matrices Ao and At and the zero mean assumption on the noise process, 
the sum of the Lyapunov exponents is simply 2e2(6t +62). In two-dimen- 
sional systems, the trace and the top Lyapunov exponent completely 
describe the spectrum. However, the authors are not aware of methods of 
describing the complete spectrum for systems with dimension greater than 
three. It should also be noted that the smallest Lyapunov exponent can be 
obtained by following the same procedure given here with time reversed. In 
this case, attention must be paid to the various generators describing the 
noise process. 

APPENDIX  

The explicit expressions for qi, ql, and hi ( i=  1, 2) used in Eqs. (10) 
are 

ql(r r  + , ~ ( J l l - - JH cos 2 r  sin 2r  2 0 

I + 2r -- H ~  sin 2r sin 2 0 + ~.(J22 - J ~  cos 

+ t [ ( J ~  + J+l) cos (C, - -~2)  

- ( J ~  + J_;-~ ) cos(C, + r 

+ (H~  - n ~ )  sin(r - r 

- (Ht~ + H2~ ) sin(r + r cos 0 sin 0 

~ l (0)= - f i t  cos2 0 - 6 2  sin 2 0 

h~(r r 0 )=  �89 - -n~l  cos 2r + J ~  sin 2r 
I + ~ [n t2  cos(t.b t - r  - H ~  cos(r + r 

- J ~  sin(r - r  J ~  sin(r + r  tan 0 
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h2(~b,, ~b2, 0) = �89 - Hf2 cos 2r + J ~  sin 2~b2) 

1 + ~ [H21 cos(~bl -- q~2) -- H ~  cos(~b I + ~b2) 

+ J ~  s i n ( G  - ~ b 2 ) +  J f i  sin(~b, +~b2) ] cot 0 

q_,(~bt, ~b,_, 0 ) =  ' + 2~b, + H + sin 2~b, _~ [J22 - J ~  + J~t cos 

- JJ2 cos 2~bz - H ~  sin 2~2] cos 0 sin 0 

I + 
"~ -~ 1- - - J 1 2  c ~  - -  ~2)  -)l- J~2 c ~  1 --I- ~2)  

- n ~  sin(~b] - ~b2) + n ~  sin(~b, + ~b2)] sin 2 0 

+ �89 [J2~ cos(~, - ~_,) - J f i  cos(~, + ~2) 

- H ~  s i n ( G  - ~2) - H ~  sin(~b, + ~b2) ] cos 2 0 

q2(0) = (61 - 32) sin 0 cos 0 
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